Defected Composite Laminates Assessment Using C-Scan Technique

Rashed A. Abdulsalam¹

Abstract:

Traditional ultrasound methods are quently used to detect separation in composites, but cutting-edge techniques have recently revealed matrix faults in straightforward tension-loaded coupon models. The present study aims to investigate separations with matrix splitting resulting from minimum-energy impacts on quasi-isotropic carbon/polyetheretherketone laminates using a range of pulse-echo methods. Traditional amplitude and time-of-flight separations are detected using C-scans at right angle incidence, whereas matrix fractures through the thickness of the laminate may be detected using C-scans with the transducer angled to the laminate axis. Some findings of ultrasound test of affected carbon-fiber reinforced polyetheretherketone specimens were described in this work, and they are contrasted with X-ray results to demonstrate the effectiveness of the suggested inspection approach.

¹- Academy of Strategic Studies- Department of Engineering and Service Research Center –Benghazi

Introduction:

The ability to detect any cracks or damage in composite structures caused by heavy loads is deemed to be of great importance, as it allows for the assessment of the components' performance and safety. Although laminated carbon - fibre composites are stronger and lighter than metallic structures, they are not as adept at handling impact damage due to their layered and mixed design [1-2].

The composite material displayed weaker mechanical properties in the through-thickness direction when compared to its in-plane properties, resulting in inadequate energy dissipation through plastic deformation. To ensure a comprehensive evaluation of the damage, the structure's lifespan must encompass considerations of both low and high-velocity impacts [3–4].

A few considerations must be taken into account concerning damage. If an object undergoes a fast and forceful impact, it usually produces a visible mark on the outside. Nevertheless, if the damage occurs during the manufacturing or maintenance process, it may not be readily apparent upon initial inspection [5-6].

In reality, the damage could be concealed within the object and gradually propagate, making it crucial to be watchful of both types of damage. This could result in a considerable reduction in mechanical properties that might eventually cause an abrupt and unforeseen failure of the component [7-8]. Due to that factor, precise non-destructive techniques are needed to identify and measure the harm caused by low-velocity impacts on laminates [9-10].

Literature Review:

The manifestation of impact damage in composite materials is typified by a complex pattern that is created by a range of fracture modes that interact with one another [11].

Based on empirical evidence, it is suggested that a minimum threshold of impact energy exists, below which no damage is detected. Conversely, when the energy levels exceed this threshold, the formation of matrix cracks due to bending or shearing stresses primarily occurs in the intermediate and back face layers surrounding the indenture site [12]. Delaminations occurring at the interface emerge between layers of varying angles and extend in correspondence with the fibre direction of the underlying layer after matrix cracks have developed.

The most significant delaminations are observed among plies with the greatest directional discrepancy. This phenomenon holds significance in academic discussions within the field of materials science and engineering. As impact energy increases, regular patterns of delaminations result in a distinctive three - dimensional spiral staircase.

Additionally, superficial fibre fractures may originate on the tensile part of the affected specimen and propagate through the other plies, ultimately resulting in complete perforation of the laminate [13-15]. In the realm of non-destructive assessment of damage resulting from impacts, it is generally necessary to employ multiple methods to thoroughly evaluate the intricate details of the damage processes.

The effectiveness of the various available techniques, both in terms of advantages and disadvantages, relies on destruction variety being revealed and inspection circumstances. Composite materials can be subjected to non-destructive evaluations using a range of inspection techniques, including acoustic waves, thermal images, liquid penetration, stereo radiography with X-rays, and ultrasound [16-17].

Despite being a potential method for detecting the energy generated by a specimen during cracking, difficulties are encountered by the acoustic wave method in accurately determining the volume, geometry, and position of flaws, particularly in composite materials with quasi-directional properties [18].

The effectiveness of thermographic examination, which entails analyzing induced thermal patterns through specimen heating or mechanical oscillatory loading, lies in detecting delamination-type defects but does not provide insights into the location of such flaws throughout the material's thickness. This limitation highlights the necessity for complementary inspection techniques to assess structural integrity in its entirety [19].

Liquid penetrants are commonly utilized in surface examinations; however, their effectiveness on composite materials is restricted.

The flaws of damaged sections are penetrated by these compounds, removing any excess colour, and the unconsumed penetrant serves as a warning indicator for surface imperfections [20]. The application of a radio-opaque liquid in Penetrantenhanced X-radiography facilitates the identification of matrix cracks and delaminations in the examined area. Although single broken fibres cannot be detected due to limitations in resolution, the distinct jagged appearance of regionalized damaged fibre routes can be observed.

One limitation of this methodology is its inability to detect internal abnormalities, as it only addresses impairments related to the surface. To precisely determine the site and extent of defects, stereoscopic X-ray techniques may be utilized, whereby distinct pairs of photographs are viewed from varying angles and visually fused to generate a 3-D representation of the damage. The comprehension of the formed stereoscopy picture can be challenging, particularly if multiple overlapping layers of damage are present, due to the intricate process of accurately identifying and locating each individual separated or fractured layer [21].

Ultrasonic through-transmission and pulse-echo strategies are employed to identify damage mechanisms. These methods utilize high-frequency mechanical oscillations to estimate position and magnitude of flaws via signal strength measurement with propagation time of ultrasound wave. Main goal is to ensure the

accurate and effective detection of defects while minimizing erroneous identifications [22-23].

Delaminations, which are faults that run parallel to the surface, are easily identified using the widely used normal incidence approach. While matrix cracks plus fibre break routes that are normal to the surface may not provide as significant a reflecting surface as delaminations, they are challenging to detect. This highlights the necessity for additional fault identification methods for materials exhibiting such issues [24-25].

It has been shown by some researchers that transverse cracks aligned with fibre orientation can be potentially detected in tension-loaded samples with simple laminating sequences by positioning the probe angled toward the investigated surface to collect energy reflected from the defect. The creation of a volumetric picture of a complicated degradation state controlled by transverse matrix fracture with separation in composite laminates that have been subjected to low-energy, low-velocity impacts are successfully demonstrated in this study by combining standard and angled incident pulse-echo. The detailed picture is created in great detail [26-27].

Methodology:

The impact test specimens were 100 x 100 mm² laminates carbon/polyetheretherketone. These panels are quasi-isotropic laminates with 16 plies and are made of 60% continuous AS4 fibres. A laminating sequencing as shown in Figure 1 overall depth of 3 mm was given. During collision examinations, specimens remained securely fastened among two 75 mm internal diameter rings using a drop weight impact testing equipment that was specifically developed for the purpose [28]. A range of impact energy and velocities was possible to generate by altering the dropping mass with drop elevation.

The impactor was equipped with an extensometer with a 13 mm diameter hemispherical nose. Velocity measurements were taken for collision as well as rebounding by an infrared sensor. Investigation findings were detailed of 3.5J and 6J blows, every one indicating a specific failure condition, detailed in terms of matrix cracking and delamination.

The tested specimens were scanned in the laboratories of the University of Toulouse by a focused transducer with a diameter of 3.0 mm, focus length of 20 mm, and a frequency of 25 MHz when submerged in water, using pulse-echo mode with normal incidence to detect delaminations, as well as an oblique incidence to identify matrix cracks [29-30].

The testing device was made up of a krautkramer HIS2 ultrasonic generator/receiver with a resolution scanning bridge of 0.025mm and a Hewlett Packard 54520A digital oscilloscope with a frequency of 500 MHz used for the acquisition of radio frequency echo signals. The sequence of scanning was controlled by a personal computer, which emitted ultrasonic pulses while acquiring reflected echoes via developed software. At every location, the ultrasound pulse was digitally scanned and saved in the oscilloscope's internal buffer, creating details that reflect from interior of the specimen, permitting post- analysis of information for reconstructing affected layer by layer via choosing a right gate position with size [31].

It was found that normal incidence tests were highly effective in terms of locating delaminations parallel to the laminate plane. The scans were focused on the middle plane, enabling excellent lateral resolution within the thickness of the material being examined.

The acquired database was consulted to reconstruct pair intensity of C-scans displaying separation of required contact with wave transit time of C-scans illustrating the depth of damage. To minimize the obscuring impact of delaminations in proximity to

the transducer on underlying deterioration, the specimens underwent examination on both sides, and the resulting data was consolidated into a singular image. The acquisition of a standard C-scan picture which encompasses a 175 by 175 matrix at a spatial sampling interval of 0.2 mm, requires approximately 20 minutes of acquisition time [32].

Locating matrix cracks that are parallel to fibres using conventional normal incidence methods presents a challenge. The majority of defects within laminates are situated analogous to ultrasound pulse trajectory. If the transducer axis is not aligned with the surface of the laminate, a considerable amount of pulse is returned away from the transducer, primarily from internal delaminations or the specimen's front surface. Consequently, the acquired echo signal at non-normal incidence is significantly attenuated compared to that achieved with right falling, since it solely consists of minimal signals that are dispersed back by matrix fractures and to a smaller range via yarn grouping. For capturing and analyzing patterns of matrix fractures across multiple layers, the angle was made more favourable from falling to achieve an amplified signal from cracks. In this particular investigation a transducer was mounted onto axis of a perpendicular sample manipulator using turnable top. Transducer orientation selected looked normal to the fibre orientation for the ply under examination, with an angle of 27 degrees from normal. This angle was achieved through iterative adjustments of the ultrasound transducer until the maximum amplitude from matrix cracks was achieved.

Results and Discussion:

Figure (1) depicts the destruction profile of the 3.5J impacted specimen reconstructed through ultrasonic imaging on a layer-by-layer basis using C-scans [33]. Separations were detected by positioning the transducer at a right angle with a gate of 45 ns.

Matrix breaking was identified through oblique incidence ultrasonic data acquisition with a 55 ns gate width.

An X-ray picture with C-scan, indicating a fracture in thickness of an identical sample is displayed in Figure (2). [34-35].

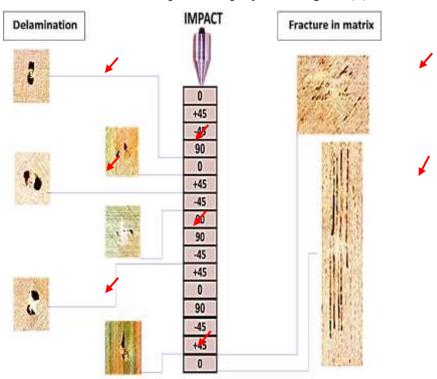


Fig. 1. Using a 3.5J impacted laminate C-scans were performed to look for matrix fractures and delaminations ply-by-ply

The maps displaying each layer of the material demonstrate the distinctive double-lobed pattern of individual separations, which contribute to a stair-like appearance that is significantly influenced by the arrangement of layers. Furthermore, upon comparing Figures (1) and (2), it is apparent that certain separations that cannot be filled with the chemical utilized for checking purposes are completely unnoticed by radiographic tests. In the context of a study of materials, matrix cracks are observed in

lower ply at tensile loading and are conceivably effectively identified using C-scans in Figure (1. A) comparison between ultrasound images with a radiographic test in Figure (2) demonstrates that adopted ultrasound approaches allow for a whole interpretation of matrix damage in laminates subjected to impact with this degree of energy, and enable individual detection of matrix fractures through backscattering techniques. The suitable choice of gate configurations concerning their length and place is crucial.

When dealing with matrix cracks, a limited time gate can provide an image with full definition, and its positioning must be chosen meticulously unless the defect's level is Pre-decided.

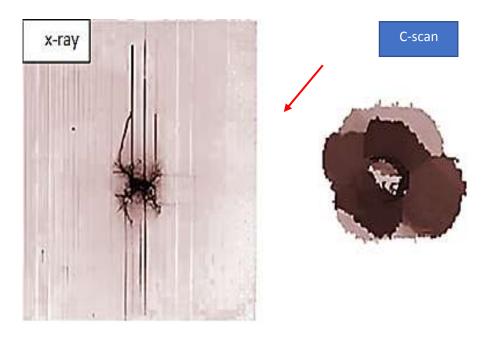


Fig. 2. An impact laminate that was fractured by 3.5 J as seen in an X-ray and a C-scan.

Gate domain effect on effectiveness of back spreading scanning for matrix fracture is highlighted in the analysis shown in Figur (3). which clarifies the impact of the gate domain on the aforementioned photography technique. The reconstructions were obtained using gates with durations of 55 ns and 350 ns, respectively.

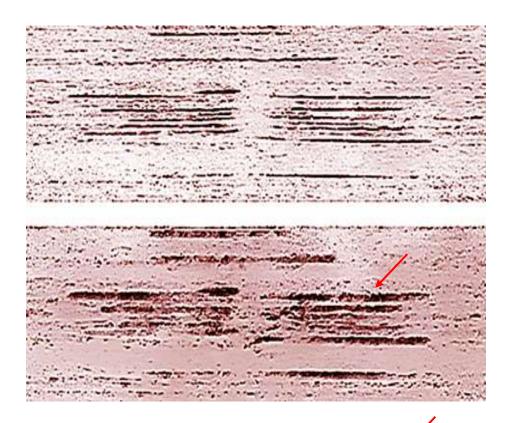


Fig.(3). Gate width's effect on the accuracy of backscattered echoes' crack imaging. Gate widths are as follows

(upper: 55 ns; lower: 350 ns) C-scan.

Figures (4) and (5) illustrate the results of experiments conducted on affected lamination with a 6 J. The deterioration sustained by the material is manifested as a matrix crack network that is evenly distributed across underlying plies, along with separation regions that are connected via nearby contacts. Additionally, a few breaks in the fibre occur in the 0 and 45-degree plies at the back face, which evade detection through ultrasonic analysis. Once more, the sensitivity of the backscatter method in detecting matrix cracks has been demonstrated, even when confronted with intricate damage conditions and various fractured layers. Highly precise information regarding impact-induced matrix fractures can be provided by utilizing a gate of adequate brevity in backscattering analyses. These findings have considerable significance for understanding the behaviour of damaged materials under different conditions.

C-scan

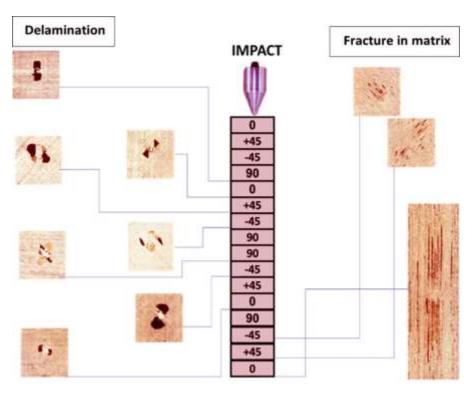


Fig. 4. Matrix fractures with delaminations in a 6 J affected laminate were detected using C-scans

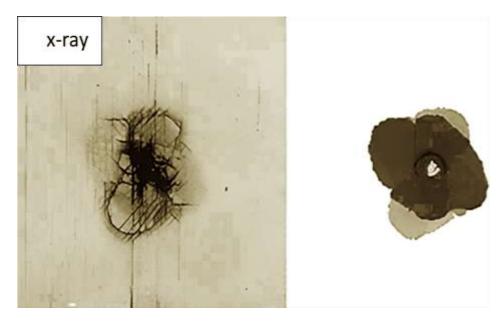


Fig. 5. Damage seen in a 6 J struck plate as shown in an X-ray and a C-scan.

Conclusions:

Remarkable sensitivity towards identifying matrix damage brought on by low-energy and low-velocity impacts has been demonstrated in both normal and angle incidence through the use of ultrasound methods with complete waveform capture. It has been demonstrated that conventional pulse-echo techniques with the right incidence are a reliable method for determining the extent and position of delaminations across the thickness of the material.

A comprehensive analysis of matrix cracking across diverse laminate thickness levels can be achieved through the utilization of oblique incidence techniques, subject to the acquisition of the complete backscattered echo and implementation of relevant software-based gating to isolate specific information at desired depths. Such techniques offer a highly detailed depiction of the phenomenon.

References:

- 1. Richardson, M. O. W., & Wisheart, M. J. (1996). Review of low-velocity impact properties of composite materials. Composites Part A: Applied Science and Manufacturing, 27(12), 1123-1131.
- Mahesh, V., Joladarashi, S., & Kulkarni, S. M. (2021). A
 comprehensive review on material selection for polymer matrix
 composites subjected to impact load. Defence Technology, 17(1),
 257-277.
- 3. Chen, D., Luo, Q., Meng, M., Li, Q., & Sun, G. (2019). Low velocity impact behavior of interlayer hybrid composite laminates with carbon/glass/basalt fibres. Composites Part B: Engineering, 176, 107191.
- 4. Chai, G. B., & Manikandan, P. (2014). Low velocity impact response of fibre-metal laminates—A review. Composite Structures, 107, 363-381.
- 5. Belingardi, G., & Vadori, R. (2002). Low velocity impact tests of laminate glass-fiber-epoxy matrix composite material plates. International Journal of Impact Engineering, 27(2), 213-229.
- 6. Reyes, G., & Sharma, U. (2010). Modeling and damage repair of woven thermoplastic composites subjected to low velocity impact. Composite Structures, 92(2), 523-531.
- Kim, J. K. (2000). Recent developments in impact damage assessment of fibre composites. Impact behaviour of fibrereinforced composite materials and structures, 33.

- 8. Zhang, Q., Zhang, J., & Wu, L. (2018). Impact and energy absorption of long fiber-reinforced thermoplastic based on two-phase modeling and experiments. International Journal of Impact Engineering, 122, 374-383.
- Wang, B., Zhong, S., Lee, T. L., Fancey, K. S., & Mi, J. (2020). Non-destructive testing and evaluation of composite materials/structures: A state-of-the-art review. Advances in mechanical engineering, 12(4), 1687814020913761.
- 10. Ryu, C. H., Park, S. H., Kim, D. H., Jhang, K. Y., & Kim, H. S. (2016). Nondestructive evaluation of hidden multi-delamination in a glass-fiber-reinforced plastic composite using terahertz spectroscopy. Composite Structures, 156, 338-347.
- 11. Saito, H., Morita, M., Kawabe, K., Kanesaki, M., Takeuchi, H., Tanaka, M., & Kimpara, I. (2011). Effect of ply-thickness on impact damage morphology in CFRP laminates. Journal of Reinforced Plastics and Composites, 30(13), 1097-1106.
- 12. Quaresimin, M., Ricotta, M., Martello, L., & Mian, S. (2013). Energy absorption in composite laminates under impact loading. Composites Part B: Engineering, 44(1), 133-140.

- 13. Gerlach, R., Siviour, C. R., Wiegand, J., & Petrinic, N. (2012). In-plane and through-thickness properties, failure modes, damage and delamination in 3D woven carbon fibre composites subjected to impact loading. Composites Science and Technology, 72(3), 397-411.
- 14. Zhu, D., Gencoglu, M., & Mobasher, B. (2009). Low velocity flexural impact behavior of AR glass fabric reinforced cement composites. Cement and Concrete Composites, 31(6), 379-387.
- 15. Aslan, Z., Karakuzu, R., & Okutan, B. (2003). The response of laminated composite plates under low-velocity impact loading. Composite structures, 59(1), 119-127.
- Gholizadeh, S. (2016). A review of non-destructive testing methods of composite materials. Procedia structural integrity, 1, 50-57.
- 17. Capriotti, M., Kim, H. E., Lanza di Scalea, F., & Kim, H. (2017). Non-Destructive inspection of impact damage in composite aircraft panels by ultrasonic guided waves and statistical processing. Materials, 10(6), 616.
- 18. Karthik, M. K., & Kumar, C. S. (2022). A comprehensive review on damage characterization in polymer composite laminates using acoustic emission monitoring. Russian Journal of Nondestructive Testing, 58(8), 705-721.

- 19. Lizaranzu, M., Lario, A., Chiminelli, A., & Amenabar, I. (2015). Non-destructive testing of composite materials by means of active thermography-based tools. Infrared Physics & Technology, 71, 113-120.
- 20. Furrow, A. P. C., Dillard, D. A., Clair, T. L. S., & Hinkley, J. (1998). Dye penetrant induced micro cracking in high performance thermoplastic polyimide composites. Journal of composite materials, 32(1), 31-48.
- 21. Senck, S., Scheerer, M., Revol, V., Dobes, K., Plank, B., & Kastner, J. (2017). Non-destructive evaluation of defects in polymer matrix composites for aerospace applications using X-ray Talbot-Lau interferometry and micro CT. In 58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference (p. 0355).
- 22. Djordjevic, B. B. (2009, September). Ultrasonic characterization of advanced composite materials. In the 10th International Conference of the Slovenian Society for Non-Destructive Testing (Application of Contemporary Non-Destructive Testing in Engineering), Ljubljana, Slovenia (pp. 47-57).
- 23. Nesvijski, E. G. (2000). Some aspects of ultrasonic testing of composites. Composite Structures, 48(1-3), 151-155.

- 24. McRae, K. I., McCray, A. G., Russell, A. J., & Bowers, C. P. (1992). Ultrasonic imaging of delamination damage around fastener holes in a graphite/epoxy composite. Damage detection in composite materials, ASTM STP, 1128, 163-79.
- 25. Kinra, V. K., Ganpatye, A. S., & Maslov, K. (2006). Ultrasonic ply-by-ply detection of matrix cracks in laminated composites. Journal of Nondestructive Evaluation, 25, 37-49.
- 26. Sollars, J., Wertz, J., & Aldrin, J. C. (2023, July). Compact Functional Material Wedge for Oblique Angle Ultrasound. In 49th Annual Review of Progress in Quantitative Nondestructive Evaluation (Vol. 86595, p. V001T01A001). American Society of Mechanical Engineers.
- 27. Welter, J. T. (2019). Oblique angle pulse-echo ultrasound characterization of barely visible impact damage in polymer matrix composites. University of Dayton.
- 28. Miao, H., Wu, Z., Ying, Z., & Hu, X. (2019). The numerical and experimental investigation on low-velocity impact response of composite panels: Effect of fabric architecture. Composite Structures, 227, 111343.
- 29. Miller, J. G. (1984). Non-destructive evaluation of composite materials using ultrasound (No. NASA-CR-173416).

- Taheri, H. (2014). Utilization of Non-destructive Testing (NDT) Methods for Composite Materials Inspection (Phased Array Ultrasonic).
- 31. Fahr, A. (1992). Ultrasonic C-scan inspection of composite materials.
- 32. Kas, Y. O., & Kaynak, C. (2005). Ultrasonic (C-scan) and microscopic evaluation of resin transfer molded epoxy composite plates. Polymer Testing, 24(1), 114-120.
- 33. Aymerich, F., & Meili, S. (2000). Ultrasonic evaluation of matrix damage in impacted composite laminates. Composites Part B: Engineering, 31(1), 1-6.
- 34. Ellison, A., & Kim, H. (2020). Shadowed delamination area estimation in ultrasonic C-scans of impacted composites validated by X-ray CT. Journal of Composite Materials, 54(4), 549-561.
- 35. Katunin, A., Wronkowicz-Katunin, A., & Dragan, K. (2020). Impact damage evaluation in composite structures based on fusion of results of ultrasonic testing and X-ray computed tomography. Sensors, 20(7), 1867.