A Graphic Presentation of Some Bitopological Spaces

Mabruk Ali Sola *
Osama Abdalsalame Alshfeh**

Abstract:

Given a bitopological space (X,t_1,t_2) , where both (X,t_1) and (X,t_2) belong to a certain class of topological spaces, we will show that there exist a graph $G=(X,s_1,s_2)$ which will give a graphic presentation of the bitopological space (X,t_1,t_2) .

Keywords: Graph; Bitopology; maps; Idempotent.

1. Preliminaries:

- 1-1. Definition: If X is a set, a map $s: X \otimes X$ is said to be an idempotent map if s = s.
- 1-2. Lemma: If $s: X \otimes X$ is any idempotent map, $C_s: P(X) \otimes P(X)$ defined by $C_s(A) = A \otimes A$ for any $A \cap P(A)$, then C_s is a closure operation in the set X.

Proof: see [1].

- 1-3. Definition: If X is a non-empty set, $s: X \otimes X$ is an idempotent map. Let t_s denotes the topology on X such that: $\overline{A} = A + X \otimes (A)$ for any $A \cap X$. We call t_s the topology induced by the idempotent map s.
- 1-4. Definition: A space X is said to be $T_{\frac{1}{2}}$ space if and only if each one-point set is either open or closed in X.

The following theorem is 1.5.6 of [1].

1-5. Theorem: If t_s is the topology induced by an idempotent map $s: X \otimes X$, then the frontier of any one-point set is either empty or a one-point set.

^{*} Department of Mathematics- Tripoli University

^{**} Department of Mathematics- Zawia University

_____ (القسم الانجليزي) عرض بياني لبعض الفضاءات

1-6. Theorem: If t_s is the topology induced by an idempotent map $s: X \otimes X$, then (X, t_s) is a $T_{1/2}$ space.

Proof:

Let $x \hat{i} X$, since $s : X \otimes X$ is an idempotent map then either we have s(x) = x or s(x) = y, $x^1 y$, and s(y) = y.

If
$$s(x) = x$$
, then $x = x$. So $x = x$ is a closed set.

If
$$s(x) = y$$
 where $x^{-1}y$, $s(y) = y$. Then $s(x) = x$, and so by 1-5 $s(x) = x$. Since $s(x) = x$, so $s(x) = x$, so $s(x) = x$.

1-7. Definition: A graph G is a triple (V, E, y), where V is a non-empty set called the set of vertices, E is a set disjoint from V called the set of edges, and y is a map from E into V' V called the incident map.

A graph G = (V, E, y) is said to be directed graph if each edge is associated with an ordered pair of V'V.

Now let G = (V, E, y) be a directed graph, $p_i : V' V \otimes V$ be the projection maps for i = 1, 2, and let $d_i = p_i + y$ for i = 1, 2. If we put $X = V \Leftrightarrow E$ and we let $s_i : X \otimes X$ be the map defined by:

$$s_i(x) = \int_{1}^{1} \frac{x}{d_i(x)} \quad if \quad x \hat{1} \quad V$$

for i = 1,2. Then s_i is an idempotent map for, and s_1, s_2 satisfy the following composition property:

$$s_2 = s_1 = s_1 = s_1$$
, and $s_1 = s_2 = s_2 = s_2 = s_2$

So following [4] we can formalize the following equivalent definition of a directed graph.

1-8. Definition: A directed graph G is a triple (X, s_1, s_2) , where X is a non-empty set and s_1, s_2 are two unary operations on X satisfying the following composition property $s_2 = s_1 = s_1 = s_1$, and $s_1 = s_2 = s_2 = s_2$.

1-9. Definition: If X is a set and t_1, t_2 are two topologies on X, then the triple (X, t_1, t_2) is called a bitopological space.

2. Graphic presentation:

In [4] Waldemar Korczynski gave a topological presentation of a graph and in [1] a topological presentation of a directed graph was given. In the following theorem, we will prove that the other way around works for a certain class of bitopological spaces.

2-1. Theorem: If (X,t_1,t_2) is a $T_{\frac{1}{2}}$ bitopological space, Fr_{t_i} $x_i^{\frac{1}{2}}$ is a one-element set or empty for all $x_i^{\frac{1}{2}}$ X and all i, and $x_i^{\frac{1}{2}}$ is t_2 -closed for all $x_i^{\frac{1}{2}}$ X. Then there exist a graph $G = (X,s_1,s_2)$ presenting the bitopological space (X,t_1,t_2) .

Proof:

Let $s_i: X \otimes X$ defined by:

$$s_i(x) = \begin{cases} y & \text{if} & Fr_{t_i} \neq \emptyset, \quad y^1 \neq x \\ x & \text{if} & Fr_{t_i} \neq \emptyset, \quad x \end{cases} \text{ or } Fr_{t_i} \neq \emptyset \text{ for } f$$

Then s_i is an idempotent map for all i and $s_2 = s_1 = s_1$, $s_1 = s_2 = s_2$. For let $x \mid X$.

Case (1) If \mathbf{x} is closed. Then $Fr_{t_i} \mathbf{x} = \mathbf{x}$ or $Fr_{t_i} \mathbf{x} = f$. So $(s_i \mathbf{x}_i)(x) = s_i(s_i(x)) = s_i(x)$.

Also
$$(s_2 + s_1)(x) = s_2(s_1(x)) = s_2(x) = x = s_1(x)$$
, and $(s_1 + s_2)(x) = s_1(s_2(x)) = s_1(x) = x = s_2(x)$.

Case (2) If x_1 is open. Then $Fr_{t_1} = x_1$, $y^1 x$, and $Fr_{t_2} = x_1$, $z^1 x$.

_____ (القسم الانجليزي) عرض بياني لبعض الفضاءات $\sqrt{1}$, are t_i -closed. Then If $Fr_{t_i} \not\vdash Fr_{t_i} Fr_{t_i} (\not\vdash Fr_{t_i} (\not\vdash Fr_{t_i} \not\vdash Fr_{t_i} \not\vdash Fr_{t_i} fr$

 Fr_{t_1} f, Fr_{t_2} f. So Fr_{t_1} f or Fr_{t_1} f, and

since

 Fr_{t_1} or Fr_{t_2} of f. Hence $(s_i - s_i)(x) = s_i(x)$ for i = 1, 2.

Also $(s_2 - s_1)(x) = s_1(x)$, and $(s_1 - s_2)(x) = z = s_2(x)$.

The case $\frac{1}{2}$ is t_1 -open or $\{z\}$ is t_2 -open is impossible. Because without loss of generality if $\frac{1}{3}$ is t_1 -open and since $\frac{1}{3}$ is t_1 open, then $f = Int_t (Fr_t, x) = Int_t (Fr_t,$

Therefore s_1, s_2 satisfy the composition property:

 $s_2 = s_1 = s_1$, and $s_1 = s_2 = s_2$. And hence the triple (X, s_1, s_2) is a graphic presentation of the bitopological space (X,t_1,t_2) .

2-2 Example:

Let (X,t_1,t_2) be the bitopological space where $X = \{a,b,$ c, e_1, e_2 and,

 $t_1 = \{f, X, \{b\}, \{e_1\}, \{e_2\}, \{b, e_1\}, \{b, e_2\}, \{e_1, e_2\}, \{a, e_1\}, \{e_1, e_2\}, \{e_2, e_2\}, \{e_1, e_2\}, \{e_1, e_2\}, \{e_1, e_2\}, \{e_2, e_2\}, \{e_1, e_2\}, \{e_2, e_2\}, \{e_1, e_2\}, \{e_2, e_2\}, \{e$ e_1 , $\{c, e_2\}$, $\{a, b, e_1\}$, $\{a, e_1, e_2\}$, $\{b, c, e_2\}$, $\{b, e_1, e_2\}$, $\{c, e_1\}$ $\{a_1, e_2\}, \{a_1, b_2, e_1, e_2\}, \{a_1, c_2, e_1, e_2\}, \{b_1, c_2, e_1, e_2\}\}$, and $t_{2} = \{f, X, \{a\}, \{e_{1}\}, \{e_{2}\}, \{a, e_{1}\}, \{a, e_{2}\}, \{e_{1}, e_{2}\}, \{b, e_{1}\}, \{e_{1}, e_{2}\}, \{e$ e_2 , $\{c,e_1\}$, $\{a,e_1,e_2\}$, $\{b,e_1,e_2\}$, $\{c,e_1,e_2\}$, $\{a,b,e_2\}$, $\{a,b,e_2\}$, $\{a,b,e_2\}$, $\{a,b,e_2\}$, $\{a,b,e_2\}$, $\{a,b,e_3\}$, $\{a,b,e_2\}$, $\{a,b,e_3\}$, $\{a,b,$ c, e_1 , $\{a, b, e_1, e_2\}$, $\{a, c, e_1, e_2\}$, $\{b, c, e_1, e_2\}$. Then

 $Fr_{t_1}(\{a\}) = \{a\}, Fr_{t_1}(\{b\}) = \{b\}, Fr_{t_1}(\{c\}) = \{c\}, Fr_{t_1}(\{e_1\}) = \{a\}, \text{ and } \{e_1\} = \{e_1\}, Fr_{t_2}(\{e_1\}) = \{e_1\}, Fr_{t_3}(\{e_1\}) = \{e_1\}, Fr_{t_4}(\{e_1\}) = \{e_1\}, Fr_{t_3}(\{e_1\}) = \{e_1\}, Fr_{t_4}(\{e_1\}) = \{e_1\}, Fr_{t_4}($ $Fr_{t}(\{e_{2}\}) = \{c\}.$

Let $s_1: X \rightarrow X$ be the map defined by $s_1(x) = \int_{\ddot{x}} x \qquad if \qquad x^1 e_1 \text{ and } x^1 e_2$ $s_1(x) = \int_{\ddot{x}} a \qquad if \qquad x = e_1$

And $Fr_{t_2}(\{a\}) = \{a\}, Fr_{t_2}(\{b\}) = \{b\}, Fr_{t_2}(\{c\}) = \{c\},$ $Fr_{t_2}(\{e_1\}) = \{c\}, \text{ and } Fr_{t_2}(\{e_2\}) = \{b\}.$

Let $s_2: X \rightarrow X$ be the map defined by :

$$s_{2}(x) = \begin{cases} x & \text{if } x^{1} e_{1} \text{ and } x^{1} e_{2} \\ \vdots & \text{if } x = e_{1} \end{cases}$$

$$\begin{cases} x & \text{if } x = e_{1} \\ \vdots & \text{if } x = e_{2} \end{cases}$$

Then figure 1.1 is the directed graph (X, s_1, s_2) which presents the bitopological space (X, t_1, t_2)

Figure 1.1

عرض بيانى لبعض الفضاءات التبولوجية الثنائية

المبروك على صولة * أسامة عبدالسلام الشفح **

المستخلص:

إذا أعطي أي فضاء توبولوجي ثنائي (X,t_1,t_2) حيث كل من (X,t_1) من الذا أعطي أي فضاء توبولوجي ثنائي التوبولوجية. في هذه الورقة سوف (X,t_2) ينتمي إلى صنف محدد من الفضاءات التوبولوجية. في هذه الورقة سوف نثبت بأنه يوجد بيان موجه $G=(X,s_1,s_2)$ يمثل عرض للفضاء التوبولوجي الثنائي (X,t_1,t_2) .

^{*}قسم الرياضيات - جامعة طرابلس-. طرابلس - ليبيا

^{**}قسم الرياضيات – جامعة الزاوية-. الزاوية-. ليبيا

References:

- 1. Alshfe h Osama. A, A Topological presentation of directed graphs, Master thesis. The 7th of April university (2006).
- 2. Bondy. J. A and Murty. U. S. R, Graph Theory with Applications, London (1976).
- 3. Kelly. J. C, Bitopological Spaces, Proc. London. Math. Soc. (3), 13 (1963), 71-89.
- 4. Korczynski Waldemar, On a topological presentation of graphs, Demonstratio Mathematica, (37) 4 (2004) 761-772.
- 5. Willard Stephen, General Topology, Addison-Wesley Publishing Company,Inc.(1970).
- 6. Wilson Robin. J and Beineke Lowell. W, Applications of Graph Theory, Academic Press, Inc. New York (1979).