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Quadratic Polynomials with Coefficients Modulo n

Hamza Daoub'*
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Abstract:

If A is a finite commutative ring with unity. The directed
graph of this ring is a graphical representation of its additive and
multiplicative structure. Using the map ¢:A% — A%, which is
defined by (a, b) = (a + b, ab); adirected graph with vertices A?
and arrows defined by ¢ can be created for every ring. In this work
we are going to present more results, and use Mathematica
Software ® to improve the algorithm which is used to calculate the
directed graph of A.
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Introduction:

This kind of associations between digraphs and finite rings
has been studied and proposed previously [e.g [1], [2]]. However,
further properties and results are presented here using only the
finite commutative ring Z,,. Some results are quoted from [2] for
the sake of completeness.

Let n <o be a natural number. Define the mapping
@: Ly XLy, = Ly XLy, by 9(a,b) = (a+ b,a.b). Since Z, is
finite, so ¢ can interpret as finite digraph G, = G(Z,) with
vertices Z,, X Z,, and arrows defined by ¢.

The outgoing (incoming) degree of a vertex (a, b) is the
number of arrows going out (coming in) this vertex. Since G is a
function, so it is clear that the outgoing degree of each vertex is
one. The incoming degree of the vertex (a, b) is the number of
different roots of x* — ax + b.

The characteristic of Z,, is n. If n is not a prime, then Z,
has zero divisors and Z,[x] is not a unique factorization domain,
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so the quadratic polynomial x? —ax + b has not a unique
solution.

Since Z, is a field, a polynomial of the form x* — ax + b € Z,[x]

is reducible if and only if there exist ¢, d € Z, so that, x* — ax +

b = (x — ¢)(x — ). There are (5) such polynomials for which
¢ # d and p for which ¢ = d. Therefore, there are exactly

(2) +p =220 4 p =220
reducible monic quadratic polynomials in Z,[x]. Since there are
p? polynomials of the form x? — ax + b and each one is either

reducible or irreducible, we conclude there are

2 _p(+1) _ p(p-1)
p 2 2

irreducible monic degree 2 polynomials in Z, [x].

The starting vertices (a,b) (with incoming degree 0)
correspond to quadratic polynomials x? — ax + b irreducible in
Z,[x]. This gives us rough upper estimate for the number of

components of the graph G(Z,).

Basic Properties:

Theorem 1 If p is an odd prime, then the solutions to the
quadratic congruence x* —ax+b =0 mod p with a non
congruent to 0 mod p are given by

<= -b+vbZ-4ac

2a

In particular, if b2 — 4ac is a quadratic non residue mod p
then x2 — ax + b = 0 has no solutions mod p.
Proof. See [2]

We let N¢(m) denote the number of solutions of x* — ax +
b =0mod m. If m =p™ip"z, ..p,?" Is the prime decomposition
of m, then Ny (m) = Ny (p™)N;(p"2)... N; (pe").

Since the incoming degree of a vertex (a, b) is the number
of roots of the quadratic polynomial x? —ax + b = 0 mod p,
then we have the following.
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Theorem 2 Let py,p,,..., Pk be the composition of the
number n. Then the highest degree of a vertex (a, b) in the graph
G(Z,) is less than or equal to 2K
Proof. Let x> — ax + b = 0 be an reducible quadratic polynomial
over Z,. From Theorem 1, we have

deg(a,b) = 2x 2 x...x2 (k—times) = 2*o
Notation: The sequence:

(ay, by) = (az, by) =... = (ag, by) 1)
of arrows in G defines a cycle of length k (or k-cycle) if (a; +
by, axby) = (aq, by),and (a; + by, a;b;) # (a;, bj) forall j < i <
k. In addition, C_k) will be referred to the directed cycle with
vertices 0,1,...,k — 1.
Let p and g be relatively prime numbers, such that n = pq, p <
q. Define a map

¢1: Ly > Ly
that maps representatives 0 < a < n in Z, to (a mod p) in Z,.
Since p divides n, then ¢, is a homomorphism. Moreover,
kero, = pZ, < Z,,and |kero,| = p.
Similarly, the same holds for ¢,: Z, - Z,.
Observe that mappings ¢; and ¢, induce mappings of
corresponding graphs, which will be denoted again by ¢, and ¢,.

We will denote to the longest cycle in the digraph G(Z,)
by C, for short, and all our discussion later will be based on the
construction of ¢, and ¢,. Furthermore, we will refer to Z,, Z,
and Z, as sets of natural numbers.

Since a closed walk might be a cycle, so according to the
structure of ¢, and ¢, and the sequence 1, we have the following:

Corollary 1 A mapping f: V (C,) = V(G) is a homomorphism of
5‘k to G ifand only if £(2), f(2),...,f(k) isacyclein G.

That means, a closed walk, which is mapped by ¢, (¢,) is
a cycle. This consequence will be used in this work from now on.
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Main Results:

If we suppose that a|f, a # 1 (a might equal to ), then it
is not proved yet that the maps ¢, and ¢, send the longest cycle
C, in G(Zy) to longest cycles C, and Cg in G(Z,) and G(Z,)
respectively. Because the cycles in G(Z,) and G(Z,) which are
smaller than C, and Cg might have a pre-image which is a cycle
with length longer than the pre-image of C, and Cz themselves.

For instance, in G(Z,,) the longest cycle is 512, and in G(Z,,) the
longest cycle is 56. While in G(Zs,,) the longest cycle is 5‘30.
Because, there is a cycle 5‘10 in G(Z,4) has a pre-image with 56 in
G(Zs,7); that is exactly a multiple of these two.

This case is not considerable in the following proposition.
As a matter of fact the computer calculations show that for n from
1 to 200 this exception case does not exist.

Proposition 1[Ref 2] Let p be a prime number such that
m = pq. The mapping ¢: G(Z,) — G(Z,) is a homomorphism.
So that ¢ maps the longest cycle in the graph G(Z,,) to the longest
cycle in G(Z,) If and only if p and q are relatively primes.
Theorem 3 Let p be a prime number, and C_O: is the longest cycle
in the graph G(Zp). The longest cycle in the graph G(Z, X Zp) is
a cycle of length:

1. k = LCM(a,v), if there is a cycle of length y such that

l1<y<aand(a,y) =1.

2. k = a if there is no such a cycle f; 1<y <a. Orthe
only cycles which are shorter than C_a’ are cycles of length divides
.

Proof. Define the maps ¢,:Z, X Z, - Z, , by ¢,((a, b)) = [a],,
and @,: Z,, X Z,, = ZL,, by @,((a, b)) = [b],.

The maps ¢, and ¢, are homomorphisms and onto.
Consider that a is the longest cycle in G(Z, X Z,); that is,
(ai, by) = (az, by) —...— (a,, b.), where a;, b; € Z, X Zy,.
Since ¢, is a homomorphism then,
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@1((ay, b1)) = (@1(aq), 91(by))
= (¢1(ar + by), p1(ay. b))
= (p1(ar) + @1(by), p1(ar). ¢1(b;)) (2)
We will use the same notations as we mentioned in the last
theorem. a;, refers to the first coordinate in the element a;.
Similarly, b;; refers to the first coordinate of b;.a;, refers to the
second coordinate in the element a;, similarly, b;, refers to the
first coordinate of b;.
Thus, from (2) we get
(a11,b11) = (a1 +
brl' Ary- brl . (3)
Itis clear that ¢, (C,) isacycle in G(Z,), also it satisfies (3). That
shows us ¢, (C,) divides C,.
If we repeat the same process on ¢, we get
@2((a1,b1)) = (92(a1), P2(b1))
= (p;(a, + by), 9, (a,. b))
= (p2(a1) + ¢2(by), p2(ar). 2 (by)) 4)
Therefore:

(a12,b12) = El)rz + brz, Ay byrz). ®)
It is clear that ¢, (C,) is a cycle in G(Z,), it satisfies (5). That
shows us ¢, (Fr)) divides Fr)
Considering that ¢, and ¢, are onto, and C,. is multiple of ¢, (C,)

and <p2(67). Then, by Chinese Reminder Theorem we have the
following:

If G(Z,) contains at least a cycle C_; suchthatl <y < a,
and (a,y) = 1. Thenm = LCM(«, y).

If G(Z,) contains no cycles or contains cycle C_y) such that
1<y <a,ory|la Thenm = LCM(a,y) = a.
The largest multiple that we can get is the longest cycle in G (Z,,),

which means that the length of Fr) is exactly the length of the
longest cycle in G(Z,). o
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Theorem 4:
Let pt, po2,..., prt be coprimes, such that p; # p; fori #

j, Then, the longest cycle C in G(Z, ny X Z pnz X. "/ nr) has a

length m = LCM(ay, ay,...,ay,), where 0y, az,.. , o, are the
lengths of the longest cycles in G(Zprlu), G(Zplzlz), G(Zp?r)

respectively.

Proof.

Define a mapping ¢: Z pliphz_pir = Zprlll X Zpgz ><...Zp;1r

by (p([a] nipnz o nr) ([a]p1111,[a]p1212,..., [a]prrlr). This mapping
is well deflned Furthermore it is an isomorphism. We know that
the longest cycle in G(Z nipnz o nr) is the least common multiple
of the length of the Iongest cycles in the digraphs G(Zpn1),
G(Zpnz), ..., and G(Zpynr) Since ¢ is bijection, Then the longest
cycle in G(Zprlu X Zpgz X... Zp?r) has a length equal to the length
of the longest cycle in G(Zp;zlp;lz___p;tr). m

Theorem 5:

Let p and g be any two prime numbers. Then the longest
cycle in the graph G(Z, X Z,;) is a cycle of length n =
LCM(a, B), where « is the length of the longest cycle in G(Z,,)
and g is the length of the longest cycle in G (Z,).

Proof.

The projection map ¢,:Z,XZ; > Z, , Where
¢1((a, b)) = [a], is a homomorphism.

Also the map ¢,:Z, X Z, - Z,, Where ¢,((a,b)) = [b], is a
homomorphism.

Suppose that (aq, b;) = (ay, b,) =...— (a,, b,) is the
longest cycle in the graph G(Z,, X Z,;), where a;, b; € Z, X Z,.
Since ¢, is a homomorphism then,

¢1((ay, b1)) = (p1(a1), 91(b1))

= (p1(an + by), ¢1(ay.by))
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= (91(an) + @1(bn), 91(an)- 91(bn)) (6)

From the definition of ¢,, we observe that ¢, (a;) is the first
coordinate of a; . Similarly, ¢, (b;) is the first coordinate of b;. In
addition, ¢, (a;) is the second coordinate of a;. Similarly, ¢, (b;)
is the second coordinate of b;, we will refer to it by b;,.

Thus, from (1) we get
(a11,b11) = (@p1 + bpy, Ay bpa)- (7)

Itis clear that <p1(5{) isacycle in G(Z,), also it satisfies (2). That

shows us <p1(C_,{) divides C_,:
If we repeat the same procedure on ¢,, we get
¢®2((ay,bq)) = (@2(a1), 92(by))
= (@2(an + bp), @2(an.by))
= (92(a1) + @2(bn), @2(an). @2(by)) (8)
Therefore:

(a12,b12) = (anz + bpz,anz.bya). (9)

Itis clear that ¢, (C_n)) isacycle in G(Zq), also it satisfies (4). That
shows us ¢, (C,) divides C,.

That means (C_n is a multiple of (pl(C_n)) and cpz(CTl).
Observe that a and 8 are the lengths of the longest cycles in the
graphs G(Z,) and G(Zq) respectively. Furthermore, the maps ¢,
and ¢, are onto and the multiple of these two cycles is longer than
any other two cycles.

Therefore, By using Chinese Reminder Theorem, we find that the
length of C_r: is the Least Common Multiple of (pl(C_r:) and
¢2(Cp). O

Let p and q be any two prime numbers. Then the longest
cycle in the graph G(Z,, X Zg) has a length 1,4 = l5,, where 1y, is
the length of the longest cycle in G(Zq X Z,). That can be seen
from the isomorphism; Ly XLy = Tq X L.

The following two theorems can be proved immediately
from theorem 5 by induction and using Chinese Reminder
Theorem.
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Theorem 6:

Let p;, p;, ..., Py are distinct prime numbers. Then the
longest cycle in the graph G(Zp, X Z,, X...X Z_) is a cycle of
length 1, = LCM(,,1,,,...,1, ), where 1, ,1, ,...,1, are the
length of the longest cycles in G(Zy,,), G(Zp,), ..., G(Z;_).
Theorem 7:

Let pf, pg, ...,p;" are relatively primes. Then the longest
cycle in the graph G(Zpa % Zpg X...X Zp?r) is a cycle of length

I, = LCM(lpg,lpg,...,lp?r), where 1p(1x,lp[23,...,lp;1r are the length
of the longest cycles in G(Zpq), G(Zpg), ooy G(Zppr).
2 r

Theorem 8:

Consider that n = 1(mod m). The function f:Z,, = Zy,
given by f([x],) = [nx]mn IS an injective homomorphism .
Proof.

Let [a]n, [Pl € Z,,- Then

f(lalm + [b]m) = f(la + b]y) = [n(a + D) ] =
[nalmn + [Mb]mn = f([alm) + f([D]n)-

Furthermore, we note that

f(aln)f ([blm) = [nalmn[nblmn = [n*ab]mn.

We have given that n = 1 (mod m), hence n =mq + 1
for some g € Z. By multiplying both sides of this equation by n
we get n? = mnq + n, so n? = n (mod mn). Therefore, we get

f(alm)f ([b]m) = [n*ablmy = [nablmy, = f([ably) =
f({a]m[b]m)-

Hence f is a homomorphism. To show f is injective, we
can compute the kernel of f. Let x € ker(f). Then [0],,, =
f([x]m) = [nX]mn SO mn|nx = m|nx. But n = 1(mod m) tells
us that (m,n) = 1. So we have m|nx = m|x. Therefore [x],, =
[0],, and so ker(f) = {[0],,}. Hence f is injective. O
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Theorem 9:

Suppose that n = 1(mod m). There is a cycle of length
r,r = 1inthe graph G (Z,,,,)(and not neccessary the longest one)
if and only if the longest cycle in G(Z,,) is of length r.
Proof:

assume that C_lr) is the longest cycle in the graph G(Z,,),
that is

(a1, by) = (az,by) >... (a, by)
Since f is a homomorphism. Then f(C; ) is a cycle in the graph

G (Zp,y) - Since every element in Imf is of the form [na],., a €
Z., , therefore, we notice that

f((ay,b1)) = (f(a1), f(b1)) = (nay, nb;) = (n(a, +
by, n(an. by)
Since f is injective. Then f(C_lT)) is a cycle of length r.
(=) This direction can be proved easily by takingamap g: Z,,,,, —
L, ,Where g(a) = [a],. O

Computer Calculations:

A computer program has been written and run on a PC to
calculate some properties of the graph G,. Some notations are
used, such as c,, (humber of components), I (length of the longest
cycle), N.l. (number of lengest cycles), and p,, (the longest path).
The ring of integers modulo n is a field if and only if n is a prime
number. Otherwise, it is not even a domain. However, the direct
product of the rings R;, for i in some index set I has zero divisors.
For instance, in the ring Z, X Z,, the elements (1,0) and (0,1)
satisfy that (1,0).(0,1) = 0. That means Z, X Z, can’t be
domain, so that can’t be field.

Similar observations can be seen in the Table 1 and Table
2 such as;

In the case, when n; = n,; the construction of the digraphs
G(Zy,n,) and G(Z,, X Z,,) is completley different.

2. Inthe construction of the digraphs G(Z,,) and G (Z, X Z,),

we have that both have the same number of component, number
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of longest cycles, length of longest cycle, and length of longest
path, which has been partly proved.

In the digraph G (Z,, X Z,,), where n, is prime and n, =
2,3,7; the number of components ¢, ,, = c,, X cy,; the longest
cycle 1, ,, = L,,; the number of cycles N.I, ,,, = n, the length
of the longest path p,, ,, = pn,.

Table 1: Resultsfor1 <n < 20

n Cn le N.1. Pn
1 1 1 1 1
2 4 1 4 3
3 9 1 9 5
4 26 2 10 4
5 39 4 14 8
6 36 1 36 5
7 49 1 49 9
8 168 4 64 8
9 213 6 12 10
10 156 4 56 8
11 149 6 28 19
12 234 2 90 6
13 199 4 30 22
14 196 1 196 9
15 351 4 126 8
16 1232 8 448 10
17 375 20 4 34
18 852 6 48 10
19 704 8 46 34
20 1154 4 504 8
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Table 2: Results for 1 < nq,n, < 20

n ny Cn lc N. lc Pn n na Cn lc N. lc Dn
2 3 6 1 6 5 4 13 71 4 6 22
2 4 10 2 2 4 4 14 70 2 14 9
2 5 12 4 2 6 4 15 93 4 18 8
2 6 12 1 12 5 4 16 164 8 24 10
2 7 14 1 14 9 4 17 97 10 6 18
2 8 24 4 4 6 4 18 146 6 4 6
2 9 28 3 4 6 4 19 101 8 6 34
2 10 24 4 4 6 4 20 166 4 36 6
2 11 24 6 2 14 5 6 36 4 6 8
2 12 30 2 6 6 5 7 42 4 7 12
2 13 28 4 2 22 5 8 80 4 30 8
2 14 28 1 28 9 5 9 87 12 2 14
2 15 36 4 6 8 5 10 78 4 28 8
2 16 60 8 8 10 5 11 73 12 2 18
2 17 38 10 2 18 5 12 93 4 18 8
2 18 56 3 8 6 5 13 87 4 22 22
2 19 40 8 2 34 5 14 84 4 14 12
2 20 62 4 12 6 5 15 117 4 42 8
3 4 15 2 3 6 5 16 206 8 36 12
3 5 18 4 3 8 5 17 118 20 2 24
3 6 18 1 18 5 5 18 174 12 4 14
3 7 21 1 21 9 5 19 132 8 9 34
3 8 36 4 6 8 5 20 209 4 84 8
3 9 42 3 6 7 6 7 42 1 42 9
3 10 36 4 6 8 6 8 72 4 12 8
3 11 36 6 3 14 6 9 84 3 12 7
3 12 45 2 9 6 6 10 72 4 12 8
3 13 42 4 3 22 6 11 72 6 6 14
3 14 42 1 42 9 6 12 90 2 18 6
3 15 54 4 9 8 6 13 84 4 6 22
3 16 90 8 12 12 6 14 84 1 84 9
3 17 57 10 3 18 6 15 108 4 18 8
3 18 84 3 12 7 6 16 180 8 24 12
3 19 60 8 3 34 6 17 114 10 6 18
3 20 93 4 18 8 6 18 168 3 24 7
4 5 31 4 6 6 6 19 120 8 6 34
4 6 30 2 6 6 6 20 186 4 36 8
4 7 35 2 7 10 7 8 84 4 14 12
4 8 64 4 12 6 7 9 98 3 14 11
4 9 73 6 2 8 7 10 84 4 14 12
4 10 62 4 12 6 7 11 84 6 7 14
4 11 61 6 6 15 7 12 105 2 21 10
4 12 78 2 30 6 7 13 98 4 7 22
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Table 3: Results for 1 < nq,n, < 20

ny

]
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n;
14

C"l
98
126
210
133
196
140
217
180
160
148
192
176
168
240
440
240
360
248
440
174
175
219
199
196
261
462
272
426
283
467
146
186
174
168
234
412
236
348
246
418
183
169
168
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219
374
230
350
241
383
213
210
279
492
291
438
303
498
196
261
446
270
398
283
457
252
420
266
392
280
434
618
354
522
369
627
610
924
642
1156
544
384
623
566
934
643
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5.Digraphsfor1 <n <5

Here are the first five digraphs of Z,, X Z,,

The Directed graph of Z, X Z,

O

The Directed graph of Z, X Z,
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The Directed graph of Z3 X Z3
The Directed graph of Z, X Z,
The Directed graph of Zg X Zs
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